Theory of Hybrid Fractional Differential Equations with Complex Order

Authors

  • Devaraj Vivek Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India.
  • Kuppusamy Kanagarajan Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India.
  • Omid Baghani Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran.
Abstract:

We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the existence of mild solutions of initial value problems for hybrid fractional differential equations. Finally, an application to solve one-variable linear fractional Schr"odinger equation with complex order is given.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Basic results on distributed order fractional hybrid differential equations with linear perturbations

In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...

full text

HYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...

full text

Study on multi-order fractional differential equations via operational matrix of hybrid basis functions

In this paper we apply hybrid functions of general block-pulse‎ ‎functions and Legendre polynomials for solving linear and‎ ‎nonlinear multi-order fractional differential equations (FDEs)‎. ‎Our approach is based on incorporating operational matrices of‎ ‎FDEs with hybrid functions that reduces the FDEs problems to‎ ‎the solution of algebraic systems‎. ‎Error estimate that verifies a‎ ‎converge...

full text

Hybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method

In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.

full text

Existence results for hybrid fractional differential equations with Hilfer fractional derivative

This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.

full text

Extremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations

In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 1

pages  65- 76

publication date 2019-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023